Vastaus:
a = 2
Selitys:
Laajentumisen jälkeen vakio-termi on poistettava, jotta varmistetaan polynomin täydellinen riippuvuus x: stä. Huomaa, että
Asetus a = 2 poistaa vakion sekä
(Korjaa minua, jos olen väärässä, kiitos)
Geometrisen sekvenssin ensimmäinen ja toinen termi ovat vastaavasti lineaarisen sekvenssin ensimmäinen ja kolmas termi Lineaarisen sekvenssin neljäs termi on 10 ja sen ensimmäisen viiden aikavälin summa on 60 Etsi lineaarisen sekvenssin viisi ensimmäistä termiä?
{16, 14, 12, 10, 8} Tyypillinen geometrinen sekvenssi voidaan esittää muodossa c_0a, c_0a ^ 2, cdots, c_0a ^ k ja tyypillinen aritmeettinen sekvenssi c_0a, c_0a + Delta, c_0a + 2Delta, cdots, c_0a + kDelta Soittaminen c_0 a: ksi ensimmäisenä elementtinä geometriselle sekvenssille, jossa meillä on {(c_0 a ^ 2 = c_0a + 2Delta -> "Ensimmäinen ja toinen GS on LS: n ensimmäinen ja kolmas"), (c_0a + 3Delta = 10- > "Lineaarisen sekvenssin neljäs termi on 10"), (5c_0a + 10Delta = 60 -> "Ensimmäisen viiden aikavälin summa on 60"):} c_0, a,
AP: n neljäs termi on yhtä suuri kuin seitsemäs kerta, kun seitsemäs termi ylittää kaksi kertaa kolmannen aikavälin. 1. Etsi ensimmäinen termi ja yhteinen ero?
A = 2/13 d = -15/13 T_4 = 3 T_7 ......... (1) T_4 - 2T_3 = 1 ........ (2) T_n = a + (n- 1) d T_4 = a + 3d T_7 = a + 6d T_3 = a + 2d Korvaavat arvot (1) yhtälössä, a + 3d = 3a + 18d = 2a + 15d = 0 .......... .... (3) Korvaavat arvot (2) yhtälössä, a + 3d - (2a + 4d) = 1 = a + 3d - 2a - 4d = 1 -a -d = 1 a + d = -1. ........... (4) Ratkaisemalla yhtälöt (3) ja (4) samanaikaisesti saamme, d = 2/13 a = -15/13