Vastaus:
135 ja
Selitys:
Ongelma tässä ongelmassa on se, että emme tiedä, mikä alkuperäisen kolmion puupuolista vastaa samanlaisen kolmion pituuden puoleista puolta.
Tiedämme, että kolmion alue voidaan laskea Heronin kaavasta
Meillä on kolmio
Tämä johtaa kvadratiiviseen yhtälöön
mikä johtaa joko
Niinpä alkuperäisen kolmion sivujen suurin ja pienin mahdollinen arvo on vastaavasti 11,7 ja 4. Näin ollen skaalauskertoimen maksimiarvo ja minimiarvo ovat
Kolmio A: n sivut ovat pituudeltaan 27, 12 ja 18. Kolmio B on samanlainen kuin kolmio A ja sen pituus on 3. Mitkä ovat kolmion B kahden muun sivun mahdolliset pituudet?
On kolme ratkaisua, jotka vastaavat olettaen, että kukin kolmesta sivusta on samanlainen kuin sivun pituus 3: (3,4 / 3,2), (27 / 4,3,9 / 2), (9 / 2,2 , 3) On olemassa kolme mahdollista ratkaisua riippuen siitä, olemmeko olettaa, että pituus 3 on samanlainen kuin 27, 12 tai 18 puolella. Jos oletamme, että se on pituus 27, toinen kaksi puolta olisi 12 / 9 = 4/3 ja 18/9 = 2, koska 3/27 = 1/9. Jos oletetaan, että se on pituus 12, muut kaksi puolta olisivat 27/4 ja 18/4, koska 3/12 = 1/4. Jos oletetaan, että se on pituus 18, muut kaksi puolta olisivat 27/6 = 9/2 ja 12/6 = 2, koska 3/18 = 1/6. T
Kolmio A: n sivut ovat pituudeltaan 27, 12 ja 21. Kolmio B on samanlainen kuin kolmio A ja sen pituus on 3. Mitkä ovat kolmion B kahden muun sivun mahdolliset pituudet?
Kolmion B mahdolliset pituudet ovat asia (1) 3, 5,25, 6,75 Tapaus (2) 3, 1,7, 3,86 Tapaus (3) 3, 1,33, 2,33 Kolmiot A & B ovat samanlaisia. Kotelo (1): .3 / 12 = b / 21 = c / 27 b = (3 * 21) / 12 = 5,25 c = (3 * 27) / 12 = 6,75 Kolmannen B: n kahden muun sivun mahdolliset pituudet ovat 3 , 5,25, 7,75 Tapaus (2): .3 / 21 = b / 12 = c / 27 b = (3 * 12) /21=1.7 c = (3 * 27) /21=3.86 Mahdolliset muut kaksi sivua kolmio B ovat 3, 1,7, 3,86 Kotelo (3): .3 / 27 = b / 12 = c / 21 b = (3 * 12) /27=1.33 c = (3 * 21) /27=2.33 Mahdolliset pituudet muut kolmion B sivut ovat 3, 1,33, 2,33
Kolmio A: n sivut ovat pituudeltaan 27, 15 ja 21. Kolmio B on samanlainen kuin kolmio A ja sen pituus on 3. Mitkä ovat kolmion B kahden muun sivun mahdolliset pituudet?
Kolmion B sivut ovat joko 9, 5 tai 7 kertaa pienempiä. Kolmion A pituudet ovat 27, 15 ja 21. Kolmio B on samanlainen kuin A ja siinä on yksi puoli sivua 3. Mitkä ovat kaksi muuta sivupituutta? Kolmion B 3: n puolella voisi olla samanlainen puoli kolmion A puolelle 27 tai 15 tai 21. Joten A: n sivut voivat olla 27/3 B: stä tai 15/3 B: stä tai 21/3 B: stä. Joten käykäämme läpi kaikki mahdollisuudet: 27/3 tai 9 kertaa pienemmät: 27/9 = 3, 15/9 = 5/3, 21/9 = 7/3 15/3 tai 5 kertaa pienemmät: 27/5, 15 / 5 = 3, 21/5 21/3 tai 7 kertaa pienempi: 27/7, 15/7, 21/7 = 3