Sinulle annetaan ympyrä B, jonka keskipiste on (4, 3) ja piste (10, 3) ja toinen ympyrä C, jonka keskipiste on (-3, -5) ja piste siinä ympyrässä on (1, -5) . Mikä on ympyrän B ja ympyrän C suhde?
3: 2 "tai" 3/2 "tarvitsemme laskea ympyröiden säteet ja verrata" "säde on etäisyys keskustasta pisteeseen" "ympyrän keskellä" "B: n keskellä = (4,3 ) "ja piste on" = (10,3) ", koska y-koordinaatit ovat molemmat 3, niin säde on" "x" koordinaattien "rArr" B "= 10-4 = 6" keskellä olevan eron ero. C "= (- 3, -5)" ja piste on "= (1, -5)" y-koordinaatit ovat molemmat - 5 "rArr" -suunnassa C "= 1 - (- 3) = 4" suhde " = (väri (punainen) "s
Ympyrällä A on keskipiste (5, -2) ja säde 2. Ympyrällä B on keskipiste (2, -1) ja säde 3. Onko ympyrät päällekkäisiä? Jos ei, mikä on pienin etäisyys niiden välillä?
Kyllä, ympyrät ovat päällekkäisiä. laskea keskipisteen häiriö Lasketaan P_2 (x_2, y_2) = (5, -2) ja P_1 (x_1, y_1) = (2, -1) d = sqrt ((x_2-x_1) ^ 2 + (y_2-y_1 ) ^ 2) d = sqrt ((5-2) ^ 2 + (- 2--1) ^ 2) d = sqrt ((3 ^ 2 + (- 1) ^ 2) d = sqrt10 = 3.16 Laske summa säteistä r_t = r_1 + r_2 = 3 + 2 = 5 r_1 + r_2> d ympyrät päällekkäin Jumalan siunatkoon .... Toivon, että selitys on hyödyllinen.
Ympyrällä A on keskipiste (-9, -1) ja säde 3. Ympyrällä B on keskipiste (-8, 3) ja säde 1. Onko ympyrät päällekkäisiä? Jos ei, mikä on pienin etäisyys niiden välillä?
Piirit eivät ole päällekkäisiä. Pienin etäisyys niiden välillä = sqrt17-4 = 0.1231 Annettujen tietojen perusteella: ympyrällä A on keskipiste ( 9, 1) ja säde 3. Ympyrällä B on keskipiste ( 8,3) ja säde 1. Onko ympyrät päällekkäisiä? Jos ei, mikä on pienin etäisyys niiden välillä? Ratkaisu: Laske etäisyys ympyrän A keskustasta ympyrän keskelle B. d = sqrt ((x_a-x_b) ^ 2 + (y_a-y_b) ^ 2) d = sqrt ((- 9--8) ^ 2 + (-1-3) ^ 2) d = sqrt ((- 1) ^ 2 + (- 4) ^ 2) d = sqrt (1 + 16) d = sqrt17 d = 4.1231 L