Mikä on y = (2x-3) (7x-12) + 17x ^ 2-13x vertex-muoto?

Mikä on y = (2x-3) (7x-12) + 17x ^ 2-13x vertex-muoto?
Anonim

Vastaus:

Yhtälön kärjen muoto on Y = 31 (x-29/31) ^ 2 + 275/31 Y=31(x2931)2+27531

Selitys:

Yhtälön kärjen muoto on Y = a (x-h) ^ 2 + k Y=a(xh)2+k

Kuten meillä on Y = (2x-3) (7x-12) + 17x ^ 2-13x Y=(2x3)(7x12)+17x213x

= 2x xx 7x-2x xx12-3xx7x-3xx (-12) + 17x ^ 2-13x =2x×7x2x×123×7x3×(12)+17x213x

= 14x ^ 2-24x-21x + 36 + 17x ^ 2-13x =14x224x21x+36+17x213x

= 14x ^ 2-24x-21x + 36 + 17x ^ 2-13x =14x224x21x+36+17x213x

= 31x ^ 2-58x + 36 =31x258x+36

= 31 (x ^ 2-58 / 31x) + 36 =31(x25831x)+36

= 31 (x ^ 2-2xx29 / 31x + (29/31) ^ 2) + 36-31xx (29/31) ^ 2 =31(x22×2931x+(2931)2)+3631×(2931)2

= 31 (x-29/31) ^ 2 + 36-841 / 31 =31(x2931)2+3684131

= 31 (x-29/31) ^ 2 + 275/31 =31(x2931)2+27531

kaavio {(2x-3) (7x-12) + 17x ^ 2-13x -5, 5, -2,88, 37,12}