Vastaus:
Selitys:
Tavallisesti yksinkertaistan tällaista murto-osaa käyttämällä kaavaa
Voit löytää
Niin
Miten jaat (i + 3) / (-3i +7) trigonometrisessä muodossa?
0,311 + 0,275i Ensin kirjoitan lausekkeet a + bi (3 + i) / (7-3i) muodossa kompleksiluvulle z = a + bi, z = r (costeta + isintheta), jossa: r = sqrt (a ^ 2 + b ^ 2) theta = tan ^ -1 (b / a) Soita 3 + i z_1 ja 7-3i z_2. Z_1: z_1 = r_1 (costheta_1 + isintheta_1) r_1 = sqrt (3 ^ 2 + 1 ^ 2) = sqrt (9 + 1) = sqrt (10) theta_1 = tan ^ -1 (1/3) = 0.32 ^ c z_1 = sqrt (10) (cos (0,32) + isin (0,32)) z_2: z_2 = r_2 (costheta_2 + isintheta_2) r_2 = sqrt (7 ^ 2 + (- 3) ^ 2) = sqrt (58) theta_2 = tan ^ -1 (-3/7) = - 0,40 ^ c Koska 7-3i on neljännessä kohdassa, on kuitenkin oltava positiivinen kulmaekvivalentti (negatiivinen k
Miten jaat (2i + 5) / (-7 i + 7) trigonometrisessä muodossa?
0,54 (cos (1,17) + isin (1,17)) Jaetaan ne kahteen erilliseen kompleksinumeroon, joista yksi on aluksi, joista toinen on lukija, 2i + 5 ja yksi nimittäjä, -7i + 7. Haluamme saada ne lineaarisesta (x + iy) muodosta trigonometriseen (r (costheta + isintheta), jossa theta on argumentti ja r on moduuli. 2i + 5 saamme r = sqrt (2 ^ 2 + 5 ^ 2 ) = sqrt29 tantheta = 2/5 -> theta = arctan (2/5) = 0,38 "rad" ja -7i + 7 saamme r = sqrt ((- 7) ^ 2 + 7 ^ 2) = 7sqrt2 toinen argumentti on vaikeampi, koska sen on oltava -pi: n ja pi: n välillä. Tiedämme, että -7i + 7: n täytyy olla neljä
Miten jaat (i + 2) / (9i + 14) trigonometrisessä muodossa?
0.134-0.015i Kompleksinumerolle z = a + bi voidaan esittää z = r (costeta + isintheta), jossa r = sqrt (a ^ 2 + b ^ 2) ja theta = tan ^ -1 (b / a ) (2 + i) / (14 + 9i) = (sqrt (2 ^ 2 + 1 ^ 2) (cos (tan ^ -1 (1/2)) + isin (tan ^ -1 (1/2)) )) / (sqrt (14 ^ 2 + 9 ^ 2) (cos (tan ^ -1 (9/14)) + isin (tan ^ -1 (9/14)))) ~~ (sqrt5 (cos (0,46 ) + isin (0,46))) / (sqrt277 (cos (0,57) + isin (0,57))) Annettu z_1 = r_1 (costheta_1 + isintheta_1) ja z_2 = r_2 (costheta_2 + isintheta_2), z_1 / z_2 = r_1 / r_2 cos (theta_1-teta2) + isiini (teta_1-teta2)) z_1 / z_2 = sqrt5 / sqrt277 (cos (0,46-0,57) + isiini (0,46-0,57)) = sqrt