Vastaus:
Selitys:
Monimutkainen numero
tietty
Todiste:
Miten jaat (i + 3) / (-3i +7) trigonometrisessä muodossa?
0,311 + 0,275i Ensin kirjoitan lausekkeet a + bi (3 + i) / (7-3i) muodossa kompleksiluvulle z = a + bi, z = r (costeta + isintheta), jossa: r = sqrt (a ^ 2 + b ^ 2) theta = tan ^ -1 (b / a) Soita 3 + i z_1 ja 7-3i z_2. Z_1: z_1 = r_1 (costheta_1 + isintheta_1) r_1 = sqrt (3 ^ 2 + 1 ^ 2) = sqrt (9 + 1) = sqrt (10) theta_1 = tan ^ -1 (1/3) = 0.32 ^ c z_1 = sqrt (10) (cos (0,32) + isin (0,32)) z_2: z_2 = r_2 (costheta_2 + isintheta_2) r_2 = sqrt (7 ^ 2 + (- 3) ^ 2) = sqrt (58) theta_2 = tan ^ -1 (-3/7) = - 0,40 ^ c Koska 7-3i on neljännessä kohdassa, on kuitenkin oltava positiivinen kulmaekvivalentti (negatiivinen k
Miten jaat (2i + 5) / (-7 i + 7) trigonometrisessä muodossa?
0,54 (cos (1,17) + isin (1,17)) Jaetaan ne kahteen erilliseen kompleksinumeroon, joista yksi on aluksi, joista toinen on lukija, 2i + 5 ja yksi nimittäjä, -7i + 7. Haluamme saada ne lineaarisesta (x + iy) muodosta trigonometriseen (r (costheta + isintheta), jossa theta on argumentti ja r on moduuli. 2i + 5 saamme r = sqrt (2 ^ 2 + 5 ^ 2 ) = sqrt29 tantheta = 2/5 -> theta = arctan (2/5) = 0,38 "rad" ja -7i + 7 saamme r = sqrt ((- 7) ^ 2 + 7 ^ 2) = 7sqrt2 toinen argumentti on vaikeampi, koska sen on oltava -pi: n ja pi: n välillä. Tiedämme, että -7i + 7: n täytyy olla neljä
Miten jaat (9i-5) / (-2i + 6) trigonometrisessä muodossa?
Frac {-5 + 9i} {6-2i} = {-12 + 11i} / 10, mutta en päässyt trigonometriseen muotoon. Nämä ovat mukavia monimutkaisia numeroita suorakulmaisessa muodossa. On aika tuhlata aikaa muuntaa ne polaarikoordinaateiksi niiden jakamiseksi. Kokeile molempia tapoja: frac {-5 + 9i} {6-2i} cdot {6 + 2i} / {6 + 2i} = {-48 + 44i} / {40} = {-12 + 11i} / 10 Se oli helppoa. Kontrastaa. Polaarikoordinaateissa meillä on -5 + 9i = qrt {5 ^ 2 + 9 ^ 2} e ^ {i teksti {atan2} (9, -5)} Kirjoitan tekstin {atan2} (y, x) korjaa kaksi parametria, neljän kvadrantin käänteinen tangentti. 6-2i = qrt {6 ^ 2 + 2 ^ 2}