Vastaus:
Kolmion Orthocenter on
Selitys:
Orthocenter on piste, jossa kolmion kolmesta korkeudesta
tavata. "Korkeus" on linja, joka kulkee kärjen (kulma) läpi
piste) ja on kohtisuorassa vastakkaiselle puolelle.
päällä
kohta
Viivan kaltevuus
Kohtisuoran kaltevuus
Rivin yhtälö
Viivan kaltevuus
Kohtisuoran kaltevuus
Rivin yhtälö
leikkauspiste, joka on ortokeskus. kertomalla
yhtälö (1)
yhtälö (3) yhtälöstä (2) saamme,
Näin ollen kolmion Orthocenter on
Tutkimuksessa, jossa oli 1118 henkilöä, 732 ihmistä ilmoitti äänestäneensä äskettäisissä presidentinvaaleissa. Kun otetaan huomioon, että 63 prosenttia äänioikeutetuista äänestäjistä tosiasiallisesti äänesti, mikä on todennäköisyys, että 1118 satunnaisesti valittua äänestäjää ainakin 732 äänesti?
Ympyrällä A on keskipiste (5, -2) ja säde 2. Ympyrällä B on keskipiste (2, -1) ja säde 3. Onko ympyrät päällekkäisiä? Jos ei, mikä on pienin etäisyys niiden välillä?
Kyllä, ympyrät ovat päällekkäisiä. laskea keskipisteen häiriö Lasketaan P_2 (x_2, y_2) = (5, -2) ja P_1 (x_1, y_1) = (2, -1) d = sqrt ((x_2-x_1) ^ 2 + (y_2-y_1 ) ^ 2) d = sqrt ((5-2) ^ 2 + (- 2--1) ^ 2) d = sqrt ((3 ^ 2 + (- 1) ^ 2) d = sqrt10 = 3.16 Laske summa säteistä r_t = r_1 + r_2 = 3 + 2 = 5 r_1 + r_2> d ympyrät päällekkäin Jumalan siunatkoon .... Toivon, että selitys on hyödyllinen.
Ympyrällä A on keskipiste (-9, -1) ja säde 3. Ympyrällä B on keskipiste (-8, 3) ja säde 1. Onko ympyrät päällekkäisiä? Jos ei, mikä on pienin etäisyys niiden välillä?
Piirit eivät ole päällekkäisiä. Pienin etäisyys niiden välillä = sqrt17-4 = 0.1231 Annettujen tietojen perusteella: ympyrällä A on keskipiste ( 9, 1) ja säde 3. Ympyrällä B on keskipiste ( 8,3) ja säde 1. Onko ympyrät päällekkäisiä? Jos ei, mikä on pienin etäisyys niiden välillä? Ratkaisu: Laske etäisyys ympyrän A keskustasta ympyrän keskelle B. d = sqrt ((x_a-x_b) ^ 2 + (y_a-y_b) ^ 2) d = sqrt ((- 9--8) ^ 2 + (-1-3) ^ 2) d = sqrt ((- 1) ^ 2 + (- 4) ^ 2) d = sqrt (1 + 16) d = sqrt17 d = 4.1231 L