![Mikä olisi 3 järjestettyä paria seuraavalle yhtälölle y = -3 ^ (x + 2) -4? Mikä olisi 3 järjestettyä paria seuraavalle yhtälölle y = -3 ^ (x + 2) -4?](https://img.go-homework.com/img/algebra/what-would-be-3-ordered-pairs-for-the-following-equation-y-3x2-4.jpg)
Tomas kirjoitti yhtälön y = 3x + 3/4. Kun Sandra kirjoitti yhtälöään, he huomasivat, että hänen yhtälöstään oli kaikki samat ratkaisut kuin Tomasin yhtälöllä. Mikä yhtälö voisi olla Sandran?
![Tomas kirjoitti yhtälön y = 3x + 3/4. Kun Sandra kirjoitti yhtälöään, he huomasivat, että hänen yhtälöstään oli kaikki samat ratkaisut kuin Tomasin yhtälöllä. Mikä yhtälö voisi olla Sandran? Tomas kirjoitti yhtälön y = 3x + 3/4. Kun Sandra kirjoitti yhtälöään, he huomasivat, että hänen yhtälöstään oli kaikki samat ratkaisut kuin Tomasin yhtälöllä. Mikä yhtälö voisi olla Sandran?](https://img.go-homework.com/algebra/tomas-wrote-the-equation-y3x3/4-when-sandra-wrote-her-equation-they-discovered-that-her-equation-had-all-the-same-solutions-as-tomass-equation.-w.jpg)
4y = 12x +3 12x-4y +3 = 0 Yhtälöä voidaan antaa monissa muodoissa ja silti tarkoittaa samaa. y = 3x + 3/4 "" (tunnetaan kaltevuus / sieppausmuoto.) Kerrotaan 4: llä fraktion poistamiseksi: 4y = 12x +3 "" rarr 12x-4y = -3 "" (vakiolomake) 12x- 4y +3 = 0 "" (yleinen muoto) Nämä kaikki ovat yksinkertaisimmassa muodossa, mutta meillä voi olla myös äärettömän vaihteluita. 4y = 12x + 3 voidaan kirjoittaa seuraavasti: 8y = 24x +6 "" 12y = 36x +9, "" 20y = 60x +15 jne.
Mitkä ovat viisi järjestettyä paria y = x + 7: lle?
![Mitkä ovat viisi järjestettyä paria y = x + 7: lle? Mitkä ovat viisi järjestettyä paria y = x + 7: lle?](https://img.go-homework.com/algebra/what-are-five-ordered-pairs-for-x-5y-25.jpg)
(3,10) "" (-4,3) "" (0,7) ovat kolme mahdollisuutta. Valitse mikä tahansa x-arvo ja korvaa se sitten annetulle yhtälölle löytääksesi y: n arvon. Jos x = 3, "" rarr y = (3) +7 = 10 Jos x = -4 "" rarr y = (-4) +7 = 3 Jos x = 0 "" rarr y = 0 + 7 = 7 antaa kolme tilattua paria seuraavasti: (3,10) "" (-4,3) "" (0,7) Voit helposti keksiä monia muita.
Jos f (x) = 3x ^ 2 ja g (x) = (x-9) / (x + 1) ja x! = - 1, niin mikä olisi f (g (x)) yhtä suuri? g (f (x))? f ^ -1 (x)? Mikä olisi f (x): n toimialue, alue ja nollat? Mikä olisi g (x): n verkkotunnus, alue ja nollat?
![Jos f (x) = 3x ^ 2 ja g (x) = (x-9) / (x + 1) ja x! = - 1, niin mikä olisi f (g (x)) yhtä suuri? g (f (x))? f ^ -1 (x)? Mikä olisi f (x): n toimialue, alue ja nollat? Mikä olisi g (x): n verkkotunnus, alue ja nollat? Jos f (x) = 3x ^ 2 ja g (x) = (x-9) / (x + 1) ja x! = - 1, niin mikä olisi f (g (x)) yhtä suuri? g (f (x))? f ^ -1 (x)? Mikä olisi f (x): n toimialue, alue ja nollat? Mikä olisi g (x): n verkkotunnus, alue ja nollat?](https://img.go-homework.com/img/blank.jpg)
F (g (x)) = 3 ((x-9) / (x + 1)) ^ 2 g (f (x)) = (3x ^ 2-9) / (3x ^ 2 + 1) f ^ - 1 (x) = juuri () (x / 3) D_f = {x RR: ssä}, R_f = {f (x) RR: ssä; f (x)> = 0} D_g = {x RR: ssä; x! = - 1}, R_g = {g (x) RR: ssä; g (x)! = 1}