Vastaus:
Tämän ratkaisemiseksi sinun on käytettävä parabolan yhtälön huippumuotoa, joka on
Selitys:
Ensimmäinen askel on määritellä muuttujat
Ja me tiedämme yhden joukon pisteitä kaaviossa
Seuraavaksi ratkaise kaava
Voit luoda yleisen kaavan parabolalle, jonka asetat arvoihin
Niinpä parabolan yhtälö, jolla on huippu
Mikä on yhtälö parabolasta, jolla on piste (0, 0) ja joka kulkee pisteen (-1, -64) läpi?
F (x) = - 64x ^ 2 Jos kärki on (0 | 0), f (x) = ax ^ 2 Nyt, me vain alitamme kohtaan (-1, -64) -64 = a * (- 1) ^ 2 = aa = -64 f (x) = - 64x ^ 2
Mikä on yhtälö parabolasta, jolla on piste (0, 0) ja joka kulkee pisteen (-1, -4) läpi?
Y = -4x ^ 2> "parabolan yhtälö" värin (sininen) "vertex-muodossa" on. • väri (valkoinen) (x) y = a (xh) ^ 2 + k ", jossa" (h, k) "ovat pisteiden koordinaatit ja" "on kerroin" "tässä (h, k) = (0,0) "siten" y = ax ^ 2 "löytää korvaavan" (-1, -4) "yhtälöön" -4 = ay = -4x ^ 2larrolor (sininen) "parabolan yhtälö" -4x ^ 2 [-10, 10, -5, 5]}
Mikä on yhtälö parabolasta, jolla on piste (0, 8) ja joka kulkee pisteen (5, -4) läpi?
On olemassa lukuisia parabolisia yhtälöitä, jotka täyttävät annetut vaatimukset. Jos rajoitamme parabolia pystysuoraan symmetria-akseliin, niin: väri (valkoinen) ("XXX") y = -12 / 25x ^ 2 + 8 Parabolille, jolla on pystysuora symmetria-akseli, parabolisen yleisen muodon yhtälö pisteellä kohdassa (a, b) on: väri (valkoinen) ("XXX") y = m (xa) ^ 2 + b Annettujen vertex-arvojen (0,8) korvaaminen (a, b): lle antaa värin (valkoinen) ) ("XXX") y = m (x-0) ^ 2 + 8 ja jos (5, -4) on ratkaisu tähän yhtälöön, sitten v