Oletetaan, että f (x) = 2x ^ 2-2 ja g (x) = x-1. Mikä on f (g (-1)): n arvo?

Oletetaan, että f (x) = 2x ^ 2-2 ja g (x) = x-1. Mikä on f (g (-1)): n arvo?
Anonim

Vastaus:

Katso ratkaisuprosessia alla:

Selitys:

Määritä ensin #G (-1) # korvaamalla #COLOR (punainen) (- 1) # jokaisesta esiintymisestä #COLOR (punainen) (x) # toiminnassa #G (x) #:

#g (väri (punainen) (x)) = väri (punainen) (x) - 1 # tulee:

#g (väri (punainen) (- 1)) = väri (punainen) (- 1) - 1 #

#g (väri (punainen) (- 1)) = -2 #

Nyt tiedämme #f (g (1)) # on yhtä suuri kuin #f (-2) #

löytö #f (-2) # korvaamalla #COLOR (punainen) (- 2) # jokaisesta esiintymisestä #COLOR (punainen) (x) # toiminnassa #F (x) #:

#f (väri (punainen) (x)) = 2color (punainen) (x) ^ 2 - 2 # tulee:

#f (väri (punainen) (- 2)) = (2 * väri (punainen) (- 2) ^ 2) - 2 #

#f (väri (punainen) (- 2)) = (2 * 4) - 2 #

#f (väri (punainen) (- 2)) = 8 - 2 #

#f (väri (punainen) (- 2)) = 6 #

Siksi:

#f (g (-1)) = 6 #