Vastaus:
Jos ympyrällä on säde
Selitys:
Mielenkiintoisin osa on, miten tämä kaava voidaan saada.
Suosittelen sinua katsomaan luennoa UNIZORista Geometria - pituus ja alue - ympyrän ympärysmitta joka selittää yksityiskohtaisesti, miten tämä kaava voidaan johtaa.
Kaksi ympyrää, joiden säde on yhtä suuri kuin r_1 ja jotka koskettavat viivaa, joka on saman puolen l, ovat etäisyydellä x toisistaan. Kolmas ympyrä, jonka säde on r_2, koskettaa kahta ympyrää. Miten löydämme kolmannen ympyrän korkeuden l: stä?
Katso alempaa. Oletetaan, että x on etäisyys välimerkkien välillä ja oletetaan, että 2 (r_1 + r_2) gt x + 2r_1 meillä on h = sqrt ((r_1 + r_2) ^ 2- (r_1 + x / 2) ^ 2) + r_1-r_2 h on etäisyys l: n ja C_2: n kehän välillä
Sinulle annetaan ympyrä B, jonka keskipiste on (4, 3) ja piste (10, 3) ja toinen ympyrä C, jonka keskipiste on (-3, -5) ja piste siinä ympyrässä on (1, -5) . Mikä on ympyrän B ja ympyrän C suhde?
3: 2 "tai" 3/2 "tarvitsemme laskea ympyröiden säteet ja verrata" "säde on etäisyys keskustasta pisteeseen" "ympyrän keskellä" "B: n keskellä = (4,3 ) "ja piste on" = (10,3) ", koska y-koordinaatit ovat molemmat 3, niin säde on" "x" koordinaattien "rArr" B "= 10-4 = 6" keskellä olevan eron ero. C "= (- 3, -5)" ja piste on "= (1, -5)" y-koordinaatit ovat molemmat - 5 "rArr" -suunnassa C "= 1 - (- 3) = 4" suhde " = (väri (punainen) "s
Ympyrällä A on keskipiste (5, -2) ja säde 2. Ympyrällä B on keskipiste (2, -1) ja säde 3. Onko ympyrät päällekkäisiä? Jos ei, mikä on pienin etäisyys niiden välillä?
Kyllä, ympyrät ovat päällekkäisiä. laskea keskipisteen häiriö Lasketaan P_2 (x_2, y_2) = (5, -2) ja P_1 (x_1, y_1) = (2, -1) d = sqrt ((x_2-x_1) ^ 2 + (y_2-y_1 ) ^ 2) d = sqrt ((5-2) ^ 2 + (- 2--1) ^ 2) d = sqrt ((3 ^ 2 + (- 1) ^ 2) d = sqrt10 = 3.16 Laske summa säteistä r_t = r_1 + r_2 = 3 + 2 = 5 r_1 + r_2> d ympyrät päällekkäin Jumalan siunatkoon .... Toivon, että selitys on hyödyllinen.