Vastaus:
Selitys:
Annettu: sekvenssi
Tämä on aritmeettinen sekvenssi, jossa on yhteinen ero
Yhteinen ero
Aritmeettisen sekvenssin yhtälö:
tai löydät viidennen aikavälin lisäämällä sitä edelleen
Kolme ensimmäistä termiä 4 kokonaislukua ovat aritmeettisia P.ja kolme viimeisintä termiä ovat Geometric.P.How löytää nämä 4 numeroa? Annettu (1. + viimeinen termi = 37) ja (kahden keskiarvon summa keskellä on 36)
"Reqd. Integers ovat", 12, 16, 20, 25. Kutsumme termejä t_1, t_2, t_3 ja t_4, jossa t_i ZZ: ssä, i = 1-4. Ottaen huomioon, että termit t_2, t_3, t_4 muodostavat GP: n, otamme, t_2 = a / r, t_3 = a, ja t_4 = ar, missä, ane0 .. Lisäksi koska t_1, t_2 ja t_3 ovat AP: ssa on 2t_2 = t_1 + t_3 rArr t_1 = 2t_2-t_3 = (2a) / ra. Näin ollen meillä on kokonaisuudessaan Seq., T_1 = (2a) / r-a, t_2 = a / r, t_3 = a, ja t_4 = ar. Annetulla tavalla t_2 + t_3 = 36rArra / r + a = 36, eli a (1 + r) = 36r ....................... .................................... (ast_1). Lisäksi t_1 + t_4
AP: n neljäs termi on yhtä suuri kuin seitsemäs kerta, kun seitsemäs termi ylittää kaksi kertaa kolmannen aikavälin. 1. Etsi ensimmäinen termi ja yhteinen ero?
A = 2/13 d = -15/13 T_4 = 3 T_7 ......... (1) T_4 - 2T_3 = 1 ........ (2) T_n = a + (n- 1) d T_4 = a + 3d T_7 = a + 6d T_3 = a + 2d Korvaavat arvot (1) yhtälössä, a + 3d = 3a + 18d = 2a + 15d = 0 .......... .... (3) Korvaavat arvot (2) yhtälössä, a + 3d - (2a + 4d) = 1 = a + 3d - 2a - 4d = 1 -a -d = 1 a + d = -1. ........... (4) Ratkaisemalla yhtälöt (3) ja (4) samanaikaisesti saamme, d = 2/13 a = -15/13
95 viidennestä ja kuudennesta maastopyöräilijästä, jotka ovat matkalla matkalla, on vielä viides luokkaa kuin kuudes luokka. Kuinka monta viides luokkalaista on matkalla?
61. Ottaen huomioon, että G_V + G_ (VI) = 95 ja G_V = G_ (VI) +27 Sub.ing G_V toisesta eqn: stä. ensimmäisessä saamme, G_ (VI) + 27 + G_ (VI) = 95 rArr 2G_ (VI) = 95-27 = 68, antamalla, G_ (VI) = 34, ja niin, G_V = G_ ( VI) + 27 = 34 + 27 = 61