Vastaus:
Selitys:
Ottaen huomioon;
Vastaus:
Osoitetaan älykäs arvausmenetelmä.
Selitys:
Otetaan "tietoinen" laukaus pimeässä.
Viimeinen numero on 4 ja tiedämme sen
joten voisimme olla 2 viimeisenä numerona juuri. Käyttämällä? edustaa seuraavaa vasemmalla olevaa numeroa
Harkitse
Meillä on yhteinen arvaus
Tarkista - jakaminen 72: ksi 70 + 2: een
Vastaus:
Selitys:
tietty
Etsi ensin ensisijainen tekijä:
#5184 = 2 * 2592#
#color (valkoinen) (5184) = 2 ^ 2 * 1296 #
#color (valkoinen) (5184) = 2 ^ 3 * 648 #
#color (valkoinen) (5184) = 2 ^ 4 * 324 #
#color (valkoinen) (5184) = 2 ^ 5 * 162 #
#color (valkoinen) (5184) = 2 ^ 6 * 81 #
#color (valkoinen) (5184) = 2 ^ 6 * 3 * 27 #
#color (valkoinen) (5184) = 2 ^ 6 * 3 ^ 2 * 9 #
#color (valkoinen) (5184) = 2 ^ 6 * 3 ^ 3 * 3 #
#color (valkoinen) (5184) = 2 ^ 6 * 3 ^ 4 #
Huomaa, että kaikki tekijät esiintyvät jopa useita kertoja, joten neliöjuuri on tarkka …
#sqrt (5184) = sqrt (2 ^ 6 * 3 ^ 4) = 2 ^ 3 * 3 ^ 2 = 72 #
Mikä on [5 (neliöjuuri 5) + 3 (neliöjuuri 7)] / [4 (neliöjuuri 7) - 3 (neliöjuuri 5)]?
(159 + 29sqrt (35)) / 47 väri (valkoinen) ("XXXXXXXX") olettaen, että en ole suorittanut aritmeettisia virheitä (5 (sqrt (5)) + 3 (sqrt (7)) / (4 (sqrt (7)) - 3 (sqrt (5)) Nimittäjän järkeistäminen kertomalla konjugaatilla: = (5 (sqrt (5)) + 3 (sqrt (7)) / (4 (sqrt (7)) - 3 (sqrt (5)) xx (4 (sqrt (7)) + 3 (sqrt (5)) / (4 (sqrt (7)) + 3 (sqrt (5)) = (20sqrt (35) + 15 ((sqrt (5)) ^ 2) +12 ((sqrt (7)) ^ 2) + 9sqrt (35)) / (16 ((sqrt (7)) ^ 2) -9 ((sqrt (5) ) ^ 2)) = (29sqrt (35) +15 (5) +12 (7)) / (16 (7) -9 (5)) = (29sqrt (35) + 75 + 84) / (112-45 ) = (159 + 29sqrt (35)) / 47
Mikä on (neliöjuuri 2) + 2 (neliöjuuri 2) + (neliöjuuri 8) / (neliöjuuri 3)?
(sqrt (2) + 2sqrt (2) + sqrt8) / sqrt3 sqrt 8 voidaan ilmaista väreinä (punainen) (2sqrt2 lauseke tulee nyt: (sqrt (2) + 2sqrt (2) + väri (punainen) (2sqrt2) ) / sqrt3 = (5 sqrt2) / sqrt3 sqrt 2 = 1,414 ja sqrt 3 = 1,732 (5 xx 1,414) / 1,732 = 7,07 / 1,732 = 4,08
Mikä on neliöjuuri 7 + neliöjuuri 7 ^ 2 + neliöjuuri 7 ^ 3 + neliöjuuri 7 ^ 4 + neliöjuuri 7 ^ 5?
Sqrt (7) + sqrt (7 ^ 2) + sqrt (7 ^ 3) + sqrt (7 ^ 4) + sqrt (7 ^ 5) Ensimmäinen asia, jonka voimme tehdä, on perua juuret niistä, joilla on tasaiset voimat. Koska: sqrt (x ^ 2) = x ja sqrt (x ^ 4) = x ^ 2 mihin tahansa numeroon, voimme vain sanoa, että sqrt (7) + sqrt (7 ^ 2) + sqrt (7 ^ 3) + sqrt (7 ^ 4) + sqrt (7 ^ 5) = sqrt (7) + 7 + sqrt (7 ^ 3) + 49 + sqrt (7 ^ 5) Nyt 7 ^ 3 voidaan kirjoittaa uudelleen nimellä 7 ^ 2 * 7, ja että 7 ^ 2 pääsee ulos juuresta! Sama pätee 7 ^ 5: een, mutta se kirjoitetaan uudelleen nimellä 7 ^ 4 * 7 sqrt (7) + sqrt (7 ^ 2) + sqrt (7 ^ 3) +