Vastaus:
Pisteet
Selitys:
Voimme laajentaa
Selvästi,
Jos haluat testata näiden kriittisten kohtien luonnetta, löydämme toisen johdannaisen:
Syrjivä on siis:
Kolmen ensimmäisen kriittisen pisteen yhdistäminen:
Viimeisen kriittisen pisteen kytkentä antaa
Alla on kuva kontuurikartasta (tasokäyristä)
Mitkä ovat f (x, y) = 6 sin (-x) * sin ^ 2 (y) ääriarvot ja satulapisteet välissä x, y [-pi, pi]?
Meillä on: f (x, y) = 6sin (-x) sin ^ 2 (y) = -6sinxsin ^ 2y Vaihe 1 - Etsi osittaiset johdannaiset Laskemme osittaisen johdannaisen kahden tai useamman muuttujan funktio erottelemalla yksi muuttuja, kun taas muut muuttujat käsitellään vakioina. Täten: Ensimmäiset johdannaiset ovat: f_x = -6cosxsin ^ 2y f_y = -6sinx (2sinycosy) = -6sinxsin2y Toinen johdannaiset (noteeratut) ovat: f_ (xx) = 6sinxsin ^ 2y f_ (yy) = -6sinx ( 2-sekvenssi = = -12sinxcos2y Toiset osittaiset ristijohdannaiset ovat: f_ (xy) = -6cosxsin2y f_ (yx) = -6cosx (2sinycosy) = -6cosxsin2y Huomaa, että toiset osittaiset ri
Mitkä ovat f (x, y) = 6 sin x sin y: n ääriarvot ja satulapisteet aikavälillä x, y [-pi, pi]?
X = pi / 2 ja y = pi x = pi / 2 ja y = -pi x = -pi / 2 ja y = pi x = -pi / 2 ja y = -pi x = pi ja y = pi / 2 x = pi ja y = -pi / 2 x = -pi ja y = pi / 2 x = -pi ja y = -pi / 2 2-muuttujan funktion kriittisten pisteiden löytämiseksi sinun on laskettava kaltevuus, joka on vektori, joka kertoo johdannaiset kunkin muuttujan suhteen: (d / dx f (x, y), d / dyf (x, y)) Joten meillä on d / dx f (x, y) = 6cos (x ) sin (y) ja vastaavasti d / dyf (x, y) = 6sin (x) cos (y). Kriittisten pisteiden löytämiseksi gradientin on oltava nolla-vektori (0,0), joka tarkoittaa järjestelmän ratkaisemista {(6cos (
Mitkä ovat paikalliset ääriarvot, joissa satulapisteet ovat f (x, y) = x ^ 2 + xy + y ^ 2 + 3x -3y + 4?
Katso alla oleva selitys Toiminto on f (x, y) = x ^ 2 + xy + y ^ 2 + 3x-3y + 4 Osittaiset johdannaiset ovat (delf) / (delx) = 2x + y + 3 (delf) / (dely) = 2y + x-3 Olkoon (delf) / (delx) = 0 ja (delf) / (dely) = 0 Sitten {(2x + y + 3 = 0), (2y + x-3 = 0):} =>, {(x = -3), (y = 3):} (del ^ 2f) / (delx ^ 2) = 2 (del ^ 2f) / (dely ^ 2) = 2 (del ^ 2f) / (delxdely) = 1 (del ^ 2f) / (delydelx) = 1 Hessian matriisi on Hf (x, y) = (((del ^ 2f) / (delx ^ 2), (del ^ 2f) / (delxdely)), ((del ^ 2f) / (delydelx), (del ^ 2f) / (dely ^ 2))) Määrittäjä on D (x, y) = det (H (x, y)) = | (2,1), (1,2) | = 4-1 = 3> 0 S