Vastaus:
Meitä pyydetään näyttämään
Selitys:
Korjaa se, mitä arvaan on typo ja sano
Sine-valikoima on
Suorakulmaisissa koordinaateissa
Kahden oikean pyöreän oikean kartion pohjan säteet ovat r1 & r2. Kartiot sulatetaan ja muotoillaan kiinteäksi palloksi, jos säde R. osoittavat, että kunkin kartion korkeus on h = 4R ^ 3 ÷ r1 ^ 2 + r2 ^ 2?
Katso alempaa. Melko yksinkertainen todella. Kartion tilavuus 1; pi * r_1 ^ 2 * h / 3 Kartion 2 tilavuus: pi * r_2 ^ 2 * h / 3 Pallon tilavuus: 4/3 * pi * r ^ 3 Joten sinulla on: "Vol of sphere" = "Vol. kartio 1 "+" kartion 2 volyymi "4/3 * pi * R ^ 3 = (pi * r_1 ^ 2 * h / 3) + (pi * r_2 ^ 2 * h / 3) Yksinkertaistaminen: 4 * pi * R ^ 3 = (pi * r_1 ^ 2 * h) + (pi * r_2 ^ 2 * h) 4 * R ^ 3 = (r_1 ^ 2 * h) + (r_2 ^ 2 * h) h = (4R ^ 3) / (r_1 ^ 2 + r_2 ^ 2)
Maya mittaa kartion säteen ja korkeuden 1% ja 2% virheillä. Hän käyttää näitä tietoja kartion tilavuuden laskemiseen. Mitä Maya voi sanoa hänen prosenttivirheestä kartion tilavuuslaskelmassa?
V_ "todellinen" = V_ "mitattu" pm4.05%, pm .03%, pm.05% Kartion tilavuus on: V = 1/3 pir ^ 2h Oletetaan, että meillä on kartio, jonka r = 1, h = 1. Tilavuus on tällöin: V = 1 / 3pi (1) ^ 2 (1) = pi / 3 Katsotaan nyt jokaista virhettä erikseen. Virhe r: V_ "w / r-virheessä" = 1 / 3pi (1,01) ^ 2 (1) johtaa: (pi / 3 (1,01) ^ 2) / (pi / 3) = 1,01 ^ 2 = 1,0201 = > 2.01% virhe Ja virhe h: ssä on lineaarinen ja 2% tilavuudesta. Jos virheet menevät samalla tavalla (joko liian suuret tai liian pienet), meillä on hieman suurempi kuin 4% virhe: 1.0201xx1.02
Millä eksponentilla minkä tahansa luvun teho muuttuu 0: ksi? Kuten tiedämme, että (mikä tahansa numero) ^ 0 = 1, niin mikä on x: n arvo (missä tahansa numerossa) ^ x = 0?
Katso alla Olkoon z on kompleksiluku, jossa on rakenne z = rho e ^ {i phi}, jossa rho> 0, rho RR: ssä ja phi = arg (z) voimme esittää tämän kysymyksen. Mitä n arvoja RR: ssä esiintyy z ^ n = 0? Hieman enemmän z ^ n = rho ^ ne ^ {in phi} = 0-> e ^ {in phi} = 0, koska hypoteesin rho> 0. Siten käyttäen Moivren identiteettiä e ^ {in phi} = cos (n phi ) + i sin (n phi), sitten z ^ n = 0-> cos (n phi) + i sin (n phi) = 0-> n phi = pi + 2k pi, k = 0, pm1, pm2, pm3, cdots Lopuksi n = (pi + 2k pi) / phi, k = 0, pm1, pm2, pm3, cdots saamme z ^ n = 0