Vastaus:
Vastaus on
Selitys:
Teemme ristituotteen löytääksemme vektorin, joka on kohtisuorassa tasoon nähden
Vektori annetaan determinantilla
Vahvistus tekemällä pistetuote
Vektori on ortogonaalinen kahdelle muulle vektorille
Yksikkövektori saadaan jakamalla moduuli
Ne ovat yksikkövektori
Mikä on yksikkövektori, joka on kohtisuorassa tasoon, joka sisältää (i + j - k) ja (i - j + k)?
Tiedämme, että jos vec C = vec A × vec B sitten vanhempi C on kohtisuorassa sekä vec A: n että vec B: n kanssa Joten meidän on vain löydettävä kahden mainitun vektorin ristituote. Joten (hati + hatj-hatk) × (hati-hatj + hatk) = - hatk-hatj-hatk + hati-hatj-i = -2 (hatk + hatj) Niinpä yksikön vektori on (-2 (hatk + hatj)) / (sqrt (2 ^ 2 + 2 ^ 2)) = - (hatk + hatj) / sqrt (2)
Mikä on yksikkövektori, joka on kohtisuorassa tasoon, joka sisältää <0, 4, 4> ja <1, 1, 1>?
Vastaus on = 〈0,1 / sqrt2, -1 / sqrt2〉 Ristituote antaa kahden muun vektorin suhteen kohtisuoran vektorin. 〈0,4,4〉 x 〈1,1,1〉 = | (hati, hatj, hatk), (0,4,4), (1,1,1) | = hati (0) -hatj (-4) + hatk (-4) = 〈0,4, -4〉 Vahvistus tekemällä pistetuotteet 〈0,4,4〉. 〈0,4, -4〉 = 0 + 16-16 = 0 〈1,1,1〉 〈0,4, -4〉 = 0 + 4-4 = 0 us 0,4, -4〉 on = 〈0,4, - 4〉 = sqrt (0 + 16 + 16) = sqrt32 = 4sqrt2 Yksikkövektori saadaan jakamalla vektori moduulilla = 1 / (4sqrt2) 〈0,4, -4〉 = 〈0,1 / sqrt2, -1 / sqrt2>
Mikä on yksikkövektori, joka on kohtisuorassa tasoon, joka sisältää (20j + 31k) ja (32i-38j-12k)?
Yksikkövektori on == 1 / 1507,8 <938,992, -640> 2 vektrossa suorakulmainen vektori tasossa lasketaan determinantilla | (veci, vecj, veck), (d, e, f), (g, h, i) | missä 〈d, e, f〉 ja 〈g, h, i〉 ovat kaksi vektoria Täällä meillä on veca = 〈0,20,31〉 ja vecb = 〈32, -38, -12〉 Siksi | (veci, vecj, veck), (0,20,31), (32, -38, -12) | = Veci | (20,31), (-38, -12) | -vecj | (0,31), (32, -12) | + Veck | (0,20), (32, -38) | = veci (20 * -12 + 38 * 31) -vecj (0 * -12-31 * 32) + veck (0 * -38-32 * 20) = 〈938,992, -640〉 = vecc Verification tekemällä 2 pistettä tuotteet 938,992, -640〉. 〈0,2