Vastaus:
Katso vastausta alla …
Selitys:
# Sqrt3 / (cos2A) -1 / (sin2A) = 4 #
# => sqrt3 cdot sin2A-cos2A = 4 cdot sin2A cdot cos2A #
# => sqrt3 / 2 cdot sin2A-1 / 2cos2A = 2 cdot sin2A cdot cos2A #
# => sin2A cdot cos30 ^ @ - cos2A cdot sin30 ^ @ = sin4A #
# => Sin (2A-30 ^ @) = sin4A #
# => 2A-30 ^ @ = 4A #
# => 2A = -30 ^ @ #
# => A = -15 ^ @ # TOIVOTTAVASTI SE AUTTAA…
KIITOS…
Näytä, että cos²π / 10 + cos²4π / 10 + cos² 6π / 10 + cos²9π / 10 = 2. Olen hieman sekava, jos teen Cos²4π / 10 = cos² (π-6π / 10) & cos²9π / 10 = cos² (π-π / 10), se muuttuu negatiiviseksi kuin cos (180 ° -theta) = - costheta in toinen neljännes. Miten voin todistaa kysymyksen?
Katso alla. LHS = cos ^ 2 (pi / 10) + cos ^ 2 ((4pi) / 10) + cos ^ 2 ((6pi) / 10) + cos ^ 2 ((9pi) / 10) = cos ^ 2 (pi / 10) + cos ^ 2 ((4pi) / 10) + cos ^ 2 (pi- (4pi) / 10) + cos ^ 2 (pi- (pi) / 10) = cos ^ 2 (pi / 10) + cos ^ 2 ((4pi) / 10) + cos ^ 2 (pi / 10) + cos ^ 2 ((4pi) / 10) = 2 * [cos ^ 2 (pi / 10) + cos ^ 2 ((4pi) / 10)] = 2 * [cos ^ 2 (pi / 2- (4pi) / 10) + cos ^ 2 ((4pi) / 10)] = 2 * [sin ^ 2 ((4pi) / 10) + cos ^ 2 ((4pi) / 10)] = 2 * 1 = 2 = RHS
Mikä on (sqrt (5+) sqrt (3)) / (sqrt (3+) sqrt (3+) sqrt (5)) - (sqrt (5-) sqrt (3)) / (sqrt (3+) sqrt (3-) sqrt (5))?
2/7 Otamme, A = (sqrt5 + sqrt3) / (sqrt3 + sqrt3 + sqrt5) - (sqrt5-sqrt3) / (sqrt3 + sqrt3-sqrt5) = (sqrt5 + sqrt3) / (2sqrt3 + sqrt5) - (sqrt5 -sqrt3) / (2sqrt3-sqrt5) = (sqrt5 + sqrt3) / (2sqrt3 + sqrt5) - (sqrt5-sqrt3) / (2sqrt3-sqrt5) = ((sqrt5 + sqrt3) (2sqrt3-sqrt5) - (sqrt5-sqrt3) ) (2sqrt3 + sqrt5)) / ((2sqrt3 + sqrt5) (2sqrt3-sqrt5) = ((2sqrt15-5 + 2 * 3-sqrt15) - (2sqrt15 + 5-2 * 3-sqrt15)) / ((2sqrt3) ^ 2- (sqrt5) ^ 2) = (peruuta (2sqrt15) -5 + 2 * 3kanta (-sqrt15) - peruuta (2sqrt15) -5 + 2 * 3 + peruuta (sqrt15)) / (12-5) = ( -10 + 12) / 7 = 2/7 Huomaa, että jos nimittäjät ovat (sqrt3 + sqrt (3
Ratkaise seuraava yhtälöjärjestelmä: [((1), sqrt (2) x + sqrt (3) y = 0), ((2), x + y = sqrt (3) -sqrt (2))]?
{(x = (3sqrt (2) -2sqrt (3)) / (sqrt (6) -2)), (y = (sqrt (6) -2) / (sqrt (2) -sqrt (3))) :} Alkaen (1) meillä on sqrt (2) x + sqrt (3) y = 0 Molempien puolien jakaminen sqrt (2) antaa meille x + sqrt (3) / sqrt (2) y = 0 "(*)" Jos vähennämme "(*)" (2): sta, saamme x + y- (x + sqrt (3) / sqrt (2) y) = sqrt (3) -sqrt (2) - 0 => (1 sqrt (3) / sqrt (2)) y = sqrt (3) -sqrt (2) => y = (sqrt (3) -sqrt (2)) / (1-sqrt (3) / sqrt (2)) = (sqrt (6) -2) / (sqrt (2) -sqrt (3)) Jos korvaamme y: lle löydetyn arvon takaisin ("*)" saamme x + sqrt (3) / sqrt (2) * (sqrt (6) -2) / (sqrt