Vastaus:
Selitys:
Itse asiassa
#sqrt (90) = 9; bar (2,18) = 9 + 1 / (2 + 1 / (18 + 1 / (2 + 1 / (18 + 1 / (2 + 1 / (18+))…)))))) #
Yksi hauska tapa löytää rationaalisia arviointeja on lineaarisen toistumisen määrittelemä kokonaislukujakso.
Harkitse neliöyhtälöä nollilla
# 0 = (x-19-2sqrt (90)) (x-19 + 2sqrt (90)) #
#color (valkoinen) (0) = (x-19) ^ 2- (2sqrt (90)) ^ 2 #
#color (valkoinen) (0) = x ^ 2-38x + 361-360 #
#color (valkoinen) (0) = x ^ 2-38x + 1 #
Niin:
# x ^ 2 = 38x-1 #
Käytä tätä saadaksesi jakson:
# {(a_0 = 0), (a_1 = 1), (a_ (n + 2) = 38a_ (n + 1) -a_n):} #
Tämän sarjan ensimmäiset ehdot ovat seuraavat:
#0, 1, 38, 1443, 54796, 2080805,…#
Peräkkäisten termien suhde on taipumus
Siten:
#sqrt (90) ~~ 1/2 (2080805 / 54796-19) = 1/2 (1039681/54796) = 1039681/109592 ~ ~ 9.48683298051 #
Mikä on [5 (neliöjuuri 5) + 3 (neliöjuuri 7)] / [4 (neliöjuuri 7) - 3 (neliöjuuri 5)]?
(159 + 29sqrt (35)) / 47 väri (valkoinen) ("XXXXXXXX") olettaen, että en ole suorittanut aritmeettisia virheitä (5 (sqrt (5)) + 3 (sqrt (7)) / (4 (sqrt (7)) - 3 (sqrt (5)) Nimittäjän järkeistäminen kertomalla konjugaatilla: = (5 (sqrt (5)) + 3 (sqrt (7)) / (4 (sqrt (7)) - 3 (sqrt (5)) xx (4 (sqrt (7)) + 3 (sqrt (5)) / (4 (sqrt (7)) + 3 (sqrt (5)) = (20sqrt (35) + 15 ((sqrt (5)) ^ 2) +12 ((sqrt (7)) ^ 2) + 9sqrt (35)) / (16 ((sqrt (7)) ^ 2) -9 ((sqrt (5) ) ^ 2)) = (29sqrt (35) +15 (5) +12 (7)) / (16 (7) -9 (5)) = (29sqrt (35) + 75 + 84) / (112-45 ) = (159 + 29sqrt (35)) / 47
Mikä on (neliöjuuri 2) + 2 (neliöjuuri 2) + (neliöjuuri 8) / (neliöjuuri 3)?
(sqrt (2) + 2sqrt (2) + sqrt8) / sqrt3 sqrt 8 voidaan ilmaista väreinä (punainen) (2sqrt2 lauseke tulee nyt: (sqrt (2) + 2sqrt (2) + väri (punainen) (2sqrt2) ) / sqrt3 = (5 sqrt2) / sqrt3 sqrt 2 = 1,414 ja sqrt 3 = 1,732 (5 xx 1,414) / 1,732 = 7,07 / 1,732 = 4,08
Mikä on neliöjuuri 7 + neliöjuuri 7 ^ 2 + neliöjuuri 7 ^ 3 + neliöjuuri 7 ^ 4 + neliöjuuri 7 ^ 5?
Sqrt (7) + sqrt (7 ^ 2) + sqrt (7 ^ 3) + sqrt (7 ^ 4) + sqrt (7 ^ 5) Ensimmäinen asia, jonka voimme tehdä, on perua juuret niistä, joilla on tasaiset voimat. Koska: sqrt (x ^ 2) = x ja sqrt (x ^ 4) = x ^ 2 mihin tahansa numeroon, voimme vain sanoa, että sqrt (7) + sqrt (7 ^ 2) + sqrt (7 ^ 3) + sqrt (7 ^ 4) + sqrt (7 ^ 5) = sqrt (7) + 7 + sqrt (7 ^ 3) + 49 + sqrt (7 ^ 5) Nyt 7 ^ 3 voidaan kirjoittaa uudelleen nimellä 7 ^ 2 * 7, ja että 7 ^ 2 pääsee ulos juuresta! Sama pätee 7 ^ 5: een, mutta se kirjoitetaan uudelleen nimellä 7 ^ 4 * 7 sqrt (7) + sqrt (7 ^ 2) + sqrt (7 ^ 3) +