Vastaus:
Selitys:
Erottaa
Päästää:
Sitten,
Komposiittitoiminnon johdannainen, jossa käytetään ketjua, esitetään seuraavasti:
Etsi jokaisen yllä olevan toiminnon johdannainen:
Subtituting
korvaamalla
Niin,
Korvattavien johdannaisten korvaaminen edellä mainitussa ketjussäännössä on:
Miten erotat f (x) = sqrt (ln (x ^ 2 + 3) ketjun sääntöä käyttäen.?
F "(x) = (x (ln (x ^ 2 + 3)) ^ (- 1/2)) / (x ^ 2 + 3) = x / ((x ^ 2 + 3) (ln (x ^ 2 + 3)) ^ (1/2)) = x / ((x ^ 2 + 3) sqrt (ln (x ^ 2 + 3))) Meille annetaan: y = (ln (x ^ 2 + 3) ) ^ (1/2) y '= 1/2 * (ln (x ^ 2 + 3)) ^ (1 / 2-1) * d / dx [ln (x ^ 2 + 3)] y' = ( ln (x ^ 2 + 3)) ^ (- 1/2) / 2 * d / dx [ln (x ^ 2 + 3)] d / dx [ln (x ^ 2 + 3)] = (d / dx [x ^ 2 + 3]) / (x ^ 2 + 3) d / dx [x ^ 2 + 3] = 2x y '= (ln (x ^ 2 + 3)) ^ (- 1/2) / 2 * (2x) / (x ^ 2 + 3) = (x (ln (x ^ 2 + 3)) ^ (- 1/2)) / (x ^ 2 + 3) = x / ((x ^ 2 + 3) (ln (x ^ 2 + 3)) ^ (1/2)) = x / ((x ^ 2 + 3) sqrt (ln (x ^ 2 + 3)))
Miten erotat f (x) = sqrt (e ^ cot (x)) ketjun säännöllä?
F '(x) == - (sqrt (e ^ cot (x)). csc ^ 2 (x)) / 2 f (x) = sqrt (e ^ cot (x)) F: n johdannaisen löytämiseksi (x ), meidän on käytettävä ketjua. värin (punainen) ketjun sääntö: f (g (x)) '= f' (g (x)). g '(x) "Olkoon u (x) = pinnasänky (x) => u' (x) = -csc ^ 2 (x) ja g (x) = e ^ (x) => g '(x) = e ^ (x) .g' (u (x)) = e ^ cot (x) f (x ) = sqrt (x) => f '(x) = 1 / (2sqrt (x)) => f' (g (u (x))) = 1 / (2sqrt (e ^ cot (x)) d / dx (f (g (u (x))) = f '(g (u (x))) g' (u (x)). u '(x) = 1 / (sqrt (e ^ cot (x ))) e ^ p
Miten erotat f (x) = sqrt (ln (1 / sqrt (xe ^ x)) ketjun sääntöä käyttäen.?
Ketju sääntö vain uudestaan ja uudestaan. f '(x) = e ^ x (1 + x) / 4sqrt ((xe ^ x) / (ln (1 / sqrt (xe ^ x)) (xe ^ x) ^ 3)) f (x) = sqrt (ln (1 / sqrt (xe ^ x))) Okei, tämä on vaikeaa: f '(x) = (sqrt (ln (1 / sqrt (xe ^ x))))' = = 1 / (2sqrt (ln (1 / sqrt (xe ^ x)))) * (ln (1 / sqrt (xe ^ x))) '= = 1 / (2sqrt (ln (1 / sqrt (xe ^ x)))) * 1 / (1 / sqrt (xe ^ x)) (1 / sqrt (xe ^ x)) '= = 1 / (2sqrt (ln (1 / sqrt (xe ^ x)))) * sqrt (xe ^ x) (1 / sqrt (xe ^ x)) '= = sqrt (xe ^ x) / (2sqrt (ln (1 / sqrt (xe ^ x)))) (1 / sqrt (xe ^ x))' = = sqrt (xe ^ x) / (2sqrt (ln (1 / sqrt