Vastaus:
Tämä on Momentum-ongelman säilyttäminen
Selitys:
Momentum on säilynyt sekä elastisissa että joustamattomissa törmäyksissä. Momentum on määritelty
Sitten, jos se on joustava törmäys, alkuperäinen momentti tekee siitä, että kohde liikkuu.
Jos se on joustamaton törmäys, molemmat esineet jäävät yhteen, joten koko massa on
Keskimääräinen postinkuljettaja kävelee 4,8 kilometriä työpäivänä. Kuinka pitkälle useimmat postin harjoittajat kävelevät 6 päivän viikossa? Heinäkuussa on 27 työpäivää, joten kuinka pitkälle postialan kuljettaja kävelee heinäkuussa? 288 metriä?
28,8 km = 28 800 m 6 päivässä 129,6 km 27 päivässä heinäkuussa. 4,8 km kävelet yhdessä päivässä. Joten 6 päivän viikossa: 4,8 xx 6 = 28,8 km = 28,800 m Heinäkuussa 27 työpäivää: DIstance = 4,8 xx 27 = 129,6 km
Kaksi pimeää tulipaloa samanaikaisesti. Jiri osuu 70% ajasta ja Benita osuu 80% ajasta. Miten määrität todennäköisyyden, että Jiri osuu siihen, mutta Benita menettää?
Todennäköisyys on 0,14. Vastuuvapauslauseke: Se on ollut pitkään, koska olen tehnyt tilastot, toivottavasti ravistin ruosteen täältä, mutta toivottavasti joku antaa minulle kaksinkertaisen tarkistuksen. Benitan puuttumisen todennäköisyys = 1 - Benitan todennäköisyys. P_ (Bmiss) = 1 - 0,8 = 0,2 P_ (Jhit) = 0.7 Haluamme näiden tapahtumien leikkauksen. Koska nämä tapahtumat ovat riippumattomia, käytämme kertolaskua: P_ (Bmiss) nnn P_ (Jhit) = P_ (Bmiss) * P_ (Jhit) = 0,2 * 0,7 = 0,14
Kiinteällä levyllä, joka pyörittää vastapäivään, on 7 kg: n massa ja 3 m: n säde. Jos levyn reunassa oleva piste liikkuu 16 m / s levyn säteeseen nähden kohtisuorassa suunnassa, mikä on levyn kulmamomentti ja nopeus?
Jos levy pyörii akselinsa läpi keskustan läpi ja kohtisuorassa sen tasoon nähden, inertian momentti I = 1 / 2MR ^ 2 Joten, inertian hetki meidän tapauksessa, I = 1 / 2MR ^ 2 = 1/2 xx (7 kg) xx (3 m) ^ 2 = 31,5 kg ^ 2, jossa M on levyn kokonaismassa ja R on säde. levyn kulmanopeus (omega) annetaan seuraavasti: omega = v / r, jossa v on lineaarinen nopeus jossain etäisyydessä r keskeltä. Niinpä kulmanopeus (omega) on meidän tapauksessa = v / r = (16ms ^ -1) / (3m) ~~ 5.33 rad "/" s Näin ollen kulma-aika = I omega ~ ~ 31,5 xx 5,33 ra kg m ^ 2 s ^ -1 = 167,8