Vastaus:
Selitys:
# 3 + i = sqrt (10) (cos (alfa) + i sin (alpha)) # missä#alpha = arctan (1/3) #
Niin
#root (3) (3 + i) = juuri (3) (sqrt (10)) (cos (alfa / 3) + i sin (alpha / 3)) #
# = juuri (6) (10) (cos (1/3 arctan (1/3)) + i sin (1/3 arctan (1/3))) #
# = juuri (6) (10) cos (1/3 arctan (1/3)) + juuri (6) (10) sin (1/3 arctan (1/3)) i #
Siitä asti kun
Kaksi muuta kuutio juuret
#omega (juuri (6) (10) cos (1/3 arctan (1/3)) + juuri (6) (10) sin (1/3 arctan (1/3)) i) #
# = juuri (6) (10) cos (1/3 arctan (1/3) + (2pi) / 3) + juuri (6) (10) sin (1/3 arctan (1/3) + (2pi) / 3) i #
# omega ^ 2 (juuri (6) (10) cos (1/3 arctan (1/3)) + juuri (6) (10) sin (1/3 arctan (1/3)) i) #
# = juuri (6) (10) cos (1/3 arctan (1/3) + (4pi) / 3) + juuri (6) (10) sin (1/3 arctan (1/3) + (4pi) / 3) i #