Mikä on f (x) = (x ^ 3- (lnx) ^ 2) / (lnx ^ 2) johdannainen?

Mikä on f (x) = (x ^ 3- (lnx) ^ 2) / (lnx ^ 2) johdannainen?
Anonim

Vastaus:

Käytä lainaussääntöä ja ketjun sääntöä. Vastaus on:

#f '(x) = (3x ^ 3lnx ^ 2-2 (lnx) ^ 2-2x ^ 3) / (x (lnx ^ 2) ^ 2) #

Tämä on yksinkertaistettu versio. nähdä Selitys katsella, kunnes se voidaan hyväksyä johdannaiseksi.

Selitys:

#f (x) = (x ^ 3- (lnx) ^ 2) / lnx ^ 2 #

#f '(x) = ((x ^ 3- (lnx) ^ 2)' * lnx ^ 2- (x ^ 3- (lnx) ^ 2) (lnx ^ 2)) / (lnx ^ 2) ^ 2 #

#f '(x) = ((3x ^ 2-2lnx * (lnx)) * lnx ^ 2- (x ^ 3- (lnx) ^ 2) 1 / x ^ 2 (x ^ 2)) / (lnx ^ 2) ^ 2 #

#f '(x) = ((3x ^ 2-2lnx * 1 / x) * lnx ^ 2- (x ^ 3- (lnx) ^ 2) 1 / x ^ 2 * 2x) / (lnx ^ 2) ^ 2 #

Tässä muodossa se on todella hyväksyttävä. Mutta yksinkertaistamaan sitä edelleen:

#f '(x) = ((3x ^ 2-2lnx / x) * lnx ^ 2- (x ^ 3- (lnx) ^ 2) 2 / x) / (lnx ^ 2) ^ 2 #

#f '(x) = (3x ^ 2lnx ^ 2-2lnx / xlnx ^ 2-x ^ 3 * 2 / x + (lnx) ^ 2 * 2 / x) / (lnx ^ 2) ^ 2 #

#f '(x) = (3x ^ 2lnx ^ 2-2lnx / xlnx ^ 2-x ^ 3 * 2 / x + (lnx) ^ 2 * 2 / x) / (lnx ^ 2) ^ 2 #

#f '(x) = (3x ^ 3lnx ^ 2-2lnxlnx ^ 2-x ^ 3 * 2 + (lnx) ^ 2 * 2) / (x (lnx ^ 2) ^ 2) #

#f '(x) = (3x ^ 3lnx ^ 2-4 (lnx) ^ 2-2x ^ 3 + 2 (lnx) ^ 2) / (x (lnx ^ 2) ^ 2) #

#f '(x) = (3x ^ 3lnx ^ 2-2 (lnx) ^ 2-2x ^ 3) / (x (lnx ^ 2) ^ 2) #