Vastaus:
Selitys:
Oletetaan, että yhteinen suhde (cr) n Kyseinen GP on
termi on viime kausi.
Ottaen huomioon, että ensimmäinen termi n GP on
Ottaen huomioon,
Tiedämme myös, että viime kausi on
Nyt,
Geometrisen sekvenssin ensimmäinen ja toinen termi ovat vastaavasti lineaarisen sekvenssin ensimmäinen ja kolmas termi Lineaarisen sekvenssin neljäs termi on 10 ja sen ensimmäisen viiden aikavälin summa on 60 Etsi lineaarisen sekvenssin viisi ensimmäistä termiä?
{16, 14, 12, 10, 8} Tyypillinen geometrinen sekvenssi voidaan esittää muodossa c_0a, c_0a ^ 2, cdots, c_0a ^ k ja tyypillinen aritmeettinen sekvenssi c_0a, c_0a + Delta, c_0a + 2Delta, cdots, c_0a + kDelta Soittaminen c_0 a: ksi ensimmäisenä elementtinä geometriselle sekvenssille, jossa meillä on {(c_0 a ^ 2 = c_0a + 2Delta -> "Ensimmäinen ja toinen GS on LS: n ensimmäinen ja kolmas"), (c_0a + 3Delta = 10- > "Lineaarisen sekvenssin neljäs termi on 10"), (5c_0a + 10Delta = 60 -> "Ensimmäisen viiden aikavälin summa on 60"):} c_0, a,
AP: n neljäs termi on yhtä suuri kuin seitsemäs kerta, kun seitsemäs termi ylittää kaksi kertaa kolmannen aikavälin. 1. Etsi ensimmäinen termi ja yhteinen ero?
A = 2/13 d = -15/13 T_4 = 3 T_7 ......... (1) T_4 - 2T_3 = 1 ........ (2) T_n = a + (n- 1) d T_4 = a + 3d T_7 = a + 6d T_3 = a + 2d Korvaavat arvot (1) yhtälössä, a + 3d = 3a + 18d = 2a + 15d = 0 .......... .... (3) Korvaavat arvot (2) yhtälössä, a + 3d - (2a + 4d) = 1 = a + 3d - 2a - 4d = 1 -a -d = 1 a + d = -1. ........... (4) Ratkaisemalla yhtälöt (3) ja (4) samanaikaisesti saamme, d = 2/13 a = -15/13
Geometrisen sekvenssin neljän peräkkäisen aikavälin summa on 30. Jos ensimmäisen ja viimeisen aikavälin AM on 9. Etsi yhteinen suhde.
Anna GP: n ensimmäinen termi ja yhteinen suhde vastaavasti a ja r. Ensimmäisellä ehdolla a + ar + ar ^ 2 + ar ^ 3 = 30 ... (1) Toisella ehdolla a + ar ^ 3 = 2 * 9 .... (2) Vähennys (2) (1) ar + ar ^ 2 = 12 .... (3) Jakaminen (2) (3) (1 + r ^ 3) / (r + r ^ 2) = 18/12 = 3/2 => ((1+ r) (1-r + r ^ 2)) / (r (1 + r)) = 3/2 => 2-2r + 2r ^ 2 = 3r => 2r ^ 2-5r + 2 = 0 => 2r ^ 2-4r-r + 2 = 0 => 2r (r-2) -1 (r-2) = 0 => (r-2) (2r-1) = 0 Joten r = 2 tai 1/2