Tasakylkisten trapetsikuvioiden PERIMETER ABCD on 80cm. Linjan AB pituus on 4 kertaa suurempi kuin CD-linjan pituus, joka on 2/5 linjan BC pituudesta (tai linjoista, jotka ovat saman pituisia). Mikä on trapetsin alue?

Tasakylkisten trapetsikuvioiden PERIMETER ABCD on 80cm. Linjan AB pituus on 4 kertaa suurempi kuin CD-linjan pituus, joka on 2/5 linjan BC pituudesta (tai linjoista, jotka ovat saman pituisia). Mikä on trapetsin alue?
Anonim

Vastaus:

Trapetsin alue on #320# # Cm ^ 2 #.

Selitys:

Anna trapetsin olla seuraavan kuvan mukainen:

Täällä, jos oletetaan pienempi puoli # CD = a # ja suurempi puoli # AB = 4a # ja # BC = a / (2/5) = (5a) / 2 #.

Sellaisenaan # BC = AD = (5a) / 2 #, # CD = a # ja # AB = 4a #

Näin ollen kehä on # (5a) / 2xx2 + a + 4a = 10a #

Mutta kehä on #80# # Cm. #. Siten # A = 8 # cm. ja kaksi rinnakkaista sivua näytetään # A # ja # B # olemme #8# cm. ja #32# cm.

Piirrämme nyt kohtisuorat # C # ja # D # että # AB #, Joka muodostaa kaksi identtistä suorakulmainen trianges, jonka

hypotenuse on # 5 / 2xx8 = 20 # # Cm. # ja pohja on # (4xx8-8) / 2 = 12 #

ja siten sen korkeus on #sqrt (20 ^ 2-12 ^ 2) = sqrt (400-144) = sqrt256 = 16 #

ja siten trapetsin alue on # 1 / 2xxhxx (a + b) #, se on

# 1 / 2xx16xx (32 + 8) = 8xx40 = 320 # # Cm ^ 2 #.