Miten int sqrt (3 (1-x ^ 2)) dx integroidaan trigonometrisen korvaamisen avulla?

Miten int sqrt (3 (1-x ^ 2)) dx integroidaan trigonometrisen korvaamisen avulla?
Anonim

Vastaus:

#int sqrt (3 (1-x ^ 2)) dx = sqrt3 / 4sin2theta + sqrt3 / 2 theta + C #

Selitys:

# x = sintheta, dx = cos theta deta #

#intsqrt (3 (1-sin ^ 2-aseta)) * cos theta deta = intsqrt (3 (cos ^ 2 -eta)) cos theta deta #

# = intsqrt3 cos theta d theta #

# = sqrt 3tuotetta ^ 2 theta deta #

# = sqrt3 int1 / 2 (cos2 theta + 1) deta #

# = sqrt3 / 2 int (cos2-teta + 1) detaatti #

# = sqrt3 / 2 1/2 sin2theta + theta #

# = sqrt3 / 4sin2theta + sqrt3 / 2 theta + C #