Vastaus:
Selitys:
Linjan yhtälö on 2x + 3y - 7 = 0, etsi: - (1) rivin (2) kaltevuus, joka on linjan X-y + 2 risteyskohdan läpi kulkevan linjan yhtälö. 0 ja 3x + y-10 = 0?
-3x + 2y-2 = 0 väri (valkoinen) ("ddd") -> väri (valkoinen) ("ddd") y = 3 / 2x + 1 Ensimmäinen osa paljon yksityiskohtaisesti, joka osoittaa, miten ensimmäiset periaatteet toimivat. Kun käytät näitä ja käytät pikakuvakkeita, käytät paljon vähemmän rivejä. väri (sininen) ("Määritä alkuyhtälöiden katkaisu") x-y + 2 = 0 "" ....... Yhtälö (1) 3x + y-10 = 0 "" .... Yhtälö ( 2) Vähennä x Eqn: n (1) molemmilta puolilta antamalla -y + 2 = -x Kerr
Tomas kirjoitti yhtälön y = 3x + 3/4. Kun Sandra kirjoitti yhtälöään, he huomasivat, että hänen yhtälöstään oli kaikki samat ratkaisut kuin Tomasin yhtälöllä. Mikä yhtälö voisi olla Sandran?
4y = 12x +3 12x-4y +3 = 0 Yhtälöä voidaan antaa monissa muodoissa ja silti tarkoittaa samaa. y = 3x + 3/4 "" (tunnetaan kaltevuus / sieppausmuoto.) Kerrotaan 4: llä fraktion poistamiseksi: 4y = 12x +3 "" rarr 12x-4y = -3 "" (vakiolomake) 12x- 4y +3 = 0 "" (yleinen muoto) Nämä kaikki ovat yksinkertaisimmassa muodossa, mutta meillä voi olla myös äärettömän vaihteluita. 4y = 12x + 3 voidaan kirjoittaa seuraavasti: 8y = 24x +6 "" 12y = 36x +9, "" 20y = 60x +15 jne.
Mikä on yhtälö ympyrästä, joka kulkee (-4, -4) ja tangentin linjan 2x - 3y + 9 = 0 välillä (-3,1)?
Nämä ehdot ovat epäjohdonmukaisia. Jos ympyrä on keskellä (-4, -4) ja kulkee läpi (-3, 1), sädeessä on kaltevuus (1 - (- 4)) / (- 3 - (- 4)) = 5, mutta rivi 2x-3y + 9 = 0 on kaltevuus 2/3, joten se ei ole kohtisuorassa säteen kanssa. Joten ympyrä ei ole tangentiaalinen siinä kohdassa. kaavio {((x + 4) ^ 2 + (y + 4) ^ 2-0.02) ((x + 4) ^ 2 + (y + 4) ^ 2-26) (2x-3y + 9) = 0 [ -22, 18, -10,88, 9.12]}